Galactic mystery: Why massive stars struggle to form in the Milky Way’s center

New research led by Dr. James De Buizer at the SETI Institute and Dr. Wanggi Lim at IPAC at Caltech revealed surprising results about the rate at which high-mass stars form in the Galactic Center of the Milky Way. The researchers based their study primarily on observations from NASA's now-retired SOFIA airborne observatory, focusing on three star-forming regions — Sgr B1, Sgr B2, and Sgr C — located at the heart of the Galaxy. Although the central part of our Galaxy has a much higher density of star-forming material than the rest of the Milky Way, in the Galactic Center, the current rate of formation of massive stars (those larger than 8 times the mass of our Sun) appears to be lower compared to the rest of the Galaxy.

The team compared these three Galactic Center star-forming regions to similar-sized regions further out in the Galaxy, including those closer to our Sun, and confirmed that the rate of star formation is below average near the Galactic Center. Their study finds that despite the Galactic Center's dense clouds of gas and dust, conditions that typically produce stars with high masses, these star-forming regions struggle to form high-mass stars. Furthermore, the studied areas appear to lack sufficient material for continued star formation, suggesting such regions effectively produce just one generation of stars, unlike typical star-forming regions.

"Recent studies have concluded that star formation is likely depressed near the Galactic Center, and even that there may be no present star formation occurring there," said De Buizer, lead author of the study. "Since presently-forming massive stars are brightest at long infrared wavelengths, we obtained the highest resolution infrared images of our Galaxy's central-most star-forming regions. The data show that, contrarily, massive stars are presently forming there, but confirm at a relatively low rate."

The study suggests that the reason for the slowdown in star formation is due to the extreme conditions in the Galactic Center. These regions orbit swiftly around the black hole at the center of the Galaxy, interacting with older stars and possibly with other material falling toward the black hole. These conditions could inhibit gas clouds from holding together long enough to form stars in the first place and prevent those that do form stars from staying together long enough for continued future star formation.

However, Sgr B2 appears to be the exception. Although its rate of present massive star formation is unusually low, like the other Galactic Center regions studied, it seems to have maintained its reservoir of dense gas and dust, allowing for a future emergent star cluster to be born.

Traditionally, astronomers have viewed giant H II regions — large clouds of gas, mainly hydrogen, in space like Sgr B1 and Sgr C — as hosts of massive star clusters still embedded in their birth clouds. This study challenges that assumption. The team argues these two regions may not fit the classical definition at all, or they may represent a new, previously unrecognized category of stellar nursery.

Enshrouded in gas and dust that obscure these star-forming regions from view in all but the longest infrared wavelengths, SOFIA's high-resolution infrared eyes allowed the team to identify more than six dozen presently-forming massive stars within the Galactic Center regions. However, these regions formed fewer stars — and topped out at a lower stellar mass — than the Galactic average.

"These Galactic Center star-forming regions are in many ways very similar to the massive star-forming regions in the relatively calm backwaters of our galaxy," said Lim. "However, the most massive stars we are finding in these Galactic Center regions, though still remarkably large, fall short in both size and quantity compared to those found in similar regions elsewhere in our Galaxy. Furthermore, such star-forming regions typically hang on to large reservoirs of star-forming material and continue to produce multiple epochs of stars, but that appears to not be the case for these Galactic Center regions."

Lim will present the results of this study at the 246th meeting of the American Astronomical Society in Anchorage, AK.

Materialsprovided bySETI Institute.Note: Content may be edited for style and length.

Single psilocybin trip delivers two years of depression relief for cancer patients

New results from a clinical trial reveal that a single dose of psilocybin — a naturally occurring psychedelic compound found in mushrooms — can provide sustained reductions in depression and anxiety in individuals with cancer suffering from major depressive disorder. The findings are published by Wiley online inCANCER, a peer-reviewed journal of the American Cancer Society.

People with cancer often struggle with depression. In this phase 2 trial, 28 patients with cancer and major depressive disorder received psychological support from a therapist prior to, during, and following a single 25-mg dose of psilocybin.

During clinical interviews conducted 2 years later, 15 (53.6%) patients demonstrated a significant reduction in depression, and 14 (50%) had sustained depression reduction as well as remission. Similarly, psilocybin reduced anxiety for 12 (42.9%) patients at 2 years.

An ongoing randomized, double-blind trial is currently evaluating up to two doses of 25 mg of psilocybin versus placebo as treatment for depression and anxiety in patients with cancer. This study is building on the single-dose study in an effort to bring a larger majority of the patients into remission of depression and anxiety.

"One dose of psilocybin with psychological support to treat depression has a long-term positive impact on relieving depression for as much as 2 years for a substantial portion of patients with cancer, and we're exploring whether repeating the treatment resolves depression for more than half of the patients," said lead author Manish Agrawal, MD, of Sunstone Therapies. "If randomized testing shows similar results, this could lead to greater use of psilocybin to treat depression in patients with cancer."

Materialsprovided byWiley.Note: Content may be edited for style and length.

Scientists discover llama antibodies that shut down COVID — and its future variants

Scientists have discovered a unique class of small antibodies that are strongly protective against a wide range of SARS coronaviruses, including SARS-CoV-1 and numerous early and recent SARS-CoV-2 variants. The unique antibodies target an essential highly conserved site at the base of the virus's spike protein, effectively clamping it shut and preventing the virus from infecting cells. The findings, published inNature Communications, offer a promising route to developing broad-spectrum antiviral treatments that could remain effective against future viral variants.

SARS-CoV-2, the virus behind COVID-19, continues to be a potential threat as it evolves into newer variants that are resistant to currently approved antibody therapies. Resistance largely emerges because antibodies typically target virus regions, such as the receptor binding domain of the spike protein, that also frequently mutate, enabling escape from antibody recognition.

To address this, a research team led by Prof. Xavier Saelens and Dr. Bert Schepens at the VIB-UGent Center for Medical Biotechnology explored a different strategy by focusing on one of the more stable subunits of the spike protein. The so-called S2 subunit is critical for the virus's ability to fuse with host cells, a process essential for infection, and it is more conserved across different coronaviruses.

The team turned to llamas (more specifically a llama called Winter). Llamas generate so-calledsingle-domain antibodies, also known as VHHs or nanobodies, that are much smaller than the antibodies generated by most animals, including humans. The researchers identified several llama antibodies that strongly neutralize a broad panel of SARS coronaviruses.

What makes these antibodies particularly promising is their unique mode of action: they act like a molecular clamp. They latch onto the poorly exposed, highly conserved region (a coiled coil of 3 alpha helices) at the base of the virus's spike protein. In doing so, they lock the spike protein in its original shape, physically preventing it from unfolding into the form the virus needs to infect cells.

The antibodies showed strong protection against infection in lab animals, even at low doses. And when researchers attempted to force the virus to evolve resistance, the virus struggled, producing only rare escape variants that were much less infectious. This points to a powerful, hard-to-evade treatment option.

"This region is so crucial to the virus that it can't easily mutate without weakening the virus itself," explains Schepens, senior author of the study. "That gives us a rare advantage: a target that's both essential and stable across variants."

This discovery marks a significant advancement in the quest for durable and broadly effective antiviral therapies, offering hope for treatments that can keep pace with viral evolution.

"The combination of high potency, broad activity against numerous viral variants, and a high barrier to resistance is incredibly promising," adds Saelens. "This work provides a strong foundation for developing next-generation antibodies that could be vital in combating not only current but also future coronavirus threats."

This research was made possible with financial support from, among others, the Research Foundation – Flanders (FWO), EOS, EU Horizon 2021, and Exevir.

Materialsprovided byVlaams Instituut voor Biotechnologie.Note: Content may be edited for style and length.

Your brain has a hidden beat — and smarter minds sync to it

When the brain is under pressure, certain neural signals begin to move in sync – much like a well-rehearsed orchestra. A new study from Johannes Gutenberg University Mainz (JGU) is the first to show how flexibly this neural synchrony adjusts to different situations and that this dynamic coordination is closely linked to cognitive abilities. "Specific signals in the midfrontal brain region are better synchronized in people with higher cognitive ability – especially during demanding phases of reasoning," explained Professor Anna-Lena Schubert from JGU's Institute of Psychology, lead author of the study recently published in theJournal of Experimental Psychology: General.

The researchers focused on the midfrontal area of the brain and the measurable coordination of the so-called theta waves. These brainwaves oscillate between four and eight hertz and belong to the group of slower neural frequencies. "They tend to appear when the brain is particularly challenged such as during focused thinking or when we need to consciously control our behavior," said Schubert, who heads the Analysis and Modeling of Complex Data Lab at JGU.

Being able to focus even next to a buzzing phone

The 148 participants in the study, aged between 18 and 60, first completed tests assessing memory and intelligence before their brain activity was recorded using electroencephalography (EEG). This method measures tiny electrical signals in the brain using electrodes placed on the scalp and is a well-established technique for gaining precise insights into cognitive processes. During EEG recording, participants completed three mentally demanding tasks designed to assess cognitive control.

The researchers were interested in the participants' ability to flexibly shift between changing rules, which is an essential aspect of intelligent information processing. For example, participants had to press a button to decide whether a number was even or odd, and moments later whether it was greater or less than five. Each switch of rules required rapid adjustment of mental strategies – a process that allowed researchers to closely observe how the brain's networks coordinate in real time.

As a result, individuals with higher cognitive abilities showed especially strong synchronization of theta waves during crucial moments, particularly when making decisions. Their brains were better at sustaining purposeful thought when it mattered most. "People with stronger midfrontal theta connectivity are often better at maintaining focus and tuning out distractions, be it that your phone buzzes while you're working or that you intend to read a book in a busy train station," explained Schubert.

Professor Anna-Lena Schubert was particularly surprised by how closely this brain rhythm coordination was tied to cognitive abilities. "We did not expect the relationship to be this clear," she said. What mattered most was not continuous synchronization, but the brain's ability to adapt its timing flexibly and contextually – like an orchestra that follows a skilled conductor. The midfrontal region often sets the tone in this coordination but works in concert with other areas across the brain. This midfrontal theta connectivity appears to be particularly relevant during the execution of decisions, however not during the preparatory mental adjustment to new task rules.

Previous EEG studies on cognitive ability mostly examined activity in isolated brain regions. In contrast, this study took a network-level approach, examining how different areas interact across multiple tasks to identify stable, overarching patterns. The findings show that individual differences in cognitive ability are linked to the brain's dynamic network behavior.

"Potential applications such as brain-based training tools or diagnostics are still a long way off," emphasized Schubert. "But our study offers important groundwork for understanding how intelligence functions at a neural level." A follow-up study, now seeking participants aged 40 and older from the Rhine-Main region, will explore which biological and cognitive factors further support this kind of efficient brain coordination and the role of additional cognitive abilities, such as processing speed and working memory.

Materialsprovided byJohannes Gutenberg Universitaet Mainz.Note: Content may be edited for style and length.

Magnetic mayhem at the sun’s poles: First images reveal a fiery mystery

Thanks to its newly tilted orbit around the Sun, the European Space Agency-led Solar Orbiter spacecraft is the first to image the Sun's poles from outside the ecliptic plane. Solar Orbiter's unique viewing angle will change our understanding of the Sun's magnetic field, the solar cycle and the workings of space weather.

Any image you have ever seen of the Sun was taken from around the Sun's equator. This is because Earth, the other planets, and all other modern spacecraft orbit the Sun within a flat disc around the Sun called the ecliptic plane. By tilting its orbit out of this plane, Solar Orbiter reveals the Sun from a whole new angle.

The video titled 'EUI video SolarOrbiter Sun south pole' compares Solar Orbiter's view (in yellow) with the one from Earth (grey), on 23 March 2025. At the time, Solar Orbiter was viewing the Sun from an angle of 17° below the solar equator, enough to directly see the Sun's south pole. Over the coming years, the spacecraft will tilt its orbit even further, so the best views are yet to come.

"Today we reveal humankind's first-ever views of the Sun's pole" says Prof. Carole Mundell, ESA's Director of Science. "The Sun is our nearest star, giver of life and potential disruptor of modern space and ground power systems, so it is imperative that we understand how it works and learn to predict its behaviour. These new unique views from our Solar Orbiter mission are the beginning of a new era of solar science."

All eyes on the Sun's south pole

A collage shows the Sun's south pole as recorded on March 16-17, 2025, when Solar Orbiter was viewing the Sun from an angle of 15° below the solar equator. This was the mission's first high-angle observation campaign, a few days before reaching its current maximum viewing angle of 17°.

The images shown in the collage were taken by three of Solar Orbiter's scientific instruments: the Polarimetric and Helioseismic Imager (PHI), the Extreme Ultraviolet Imager (EUI), and the Spectral Imaging of the Coronal Environment (SPICE) instrument. Click on the image to zoom in and see video versions of the data.

"We didn't know what exactly to expect from these first observations – the Sun's poles are literally terra incognita," says Prof. Sami Solanki, who leads the PHI instrument team from the Max Planck Institute for Solar System Research (MPS) in Germany.

The instruments each observe the Sun in a different way. PHI images the Sun in visible light (top left of the collage) and maps the Sun's surface magnetic field (top centre). EUI images the Sun in ultraviolet light (top right), revealing the million-degree charged gas in the Sun's outer atmosphere, the corona. The SPICE instrument (bottom row) captures light coming from different temperatures of charged gas above the Sun's surface, thereby revealing different layers of the Sun's atmosphere.

By comparing and analysing the complementary observations made by these three imaging instruments, we can learn about how material moves in the Sun's outer layers. This may reveal unexpected patterns, such as polar vortices (swirling gas) similar to those seen around the poles of Venus and Saturn.

These groundbreaking new observations are also key to understanding the Sun's magnetic field and why it flips roughly every 11 years, coinciding with a peak in solar activity. Current models and predictions of the 11-year solar cycle fall short of being able to predict exactly when and how powerfully the Sun will reach its most active state.

Messy magnetism at solar maximum

One of the first scientific findings from Solar Orbiter's polar observations is the discovery that at the south pole, the Sun's magnetic field is currently a mess. While a normal magnet has a clear north and south pole, the PHI instrument's magnetic field measurements show that both north and south polarity magnetic fields are present at the Sun's south pole.

This happens only for a short time during each solar cycle, at solar maximum, when the Sun's magnetic field flips and is at its most active. After the field flip, a single polarity should slowly build up and take over the Sun's poles. In 5-6 years from now, the Sun will reach its next solar minimum, during which its magnetic field is at its most orderly and the Sun displays its lowest levels of activity.

"How exactly this build-up occurs is still not fully understood, so Solar Orbiter has reached high latitudes at just the right time to follow the whole process from its unique and advantageous perspective," notes Sami.

PHI's view of the full Sun's magnetic field puts these measurements in context (see 'PHI_south-pole-Bmap' and 'PHI_global-Bmap_20250211-20250429'). The darker the colour (red/blue), the stronger the magnetic field is along the line of sight from Solar Orbiter to the Sun.

The strongest magnetic fields are found in two bands either side of the Sun's equator. The dark red and dark blue regions highlight active regions, where magnetic field gets concentrated in sunspots on the Sun's surface (photosphere).

Meanwhile, both the Sun's south and north poles are speckled with red and blue patches. This demonstrates that at small scales, the Sun's magnetic field has a complex and ever-changing structure.

SPICE measures movement for the first time

Another interesting 'first' for Solar Orbiter comes from the SPICE instrument. Being an imaging spectrograph, SPICE measures the light (spectral lines) sent out by specific chemical elements – among which hydrogen, carbon, oxygen, neon and magnesium – at known temperatures. For the last five years, SPICE has used this to reveal what happens in different layers above the Sun's surface.

Now for the first time, the SPICE team has also managed to use precise tracking of spectral lines to measure how fast clumps of solar material are moving. This is known as a 'Doppler measurement', named after the same effect that makes passing ambulance sirens change pitch as they drive by.

The resulting velocity map reveals how solar material moves within a specific layer of the Sun. By comparing the SPICE doppler and intensity maps, you can directly compare the location and movement of particles (carbon ions) in a thin layer called the 'transition region', where the Sun's temperature rapidly increases from 10 000 °C to hundreds of thousands of degrees.

The SPICE intensity map reveals the locations of clumps of carbon ions. The SPICE doppler map includes the blue and red colours to indicate how fast the carbon ions are moving towards and away from the Solar Orbiter spacecraft, respectively. Darker blue and red patches are related to material flowing faster due to small plumes or jets.

Crucially, Doppler measurements can reveal how particles are flung out from the Sun in the form of solar wind. Uncovering how the Sun produces solar wind is one of Solar Orbiter's key scientific goals.

"Doppler measurements of solar wind setting off from the Sun by current and past space missions have been hampered by the grazing view of the solar poles. Measurements from high latitudes, now possible with Solar Orbiter, will be a revolution in solar physics," says SPICE team leader, Frédéric Auchère from the University of Paris-Saclay (France).

These are just the first observations made by Solar Orbiter from its newly inclined orbit, and much of this first set of data still awaits further analysis. The complete dataset of Solar Orbiter's first full 'pole-to-pole' flight past the Sun is expected to arrive on Earth by October 2025. All ten of Solar Orbiter's scientific instruments will collect unprecedented data in the years to come.

"This is just the first step of Solar Orbiter's 'stairway to heaven': in the coming years, the spacecraft will climb further out of the ecliptic plane for ever better views of the Sun's polar regions. These data will transform our understanding of the Sun's magnetic field, the solar wind, and solar activity," notes Daniel Müller, ESA's Solar Orbiter project scientist.

Solar Orbiter is the most complex scientific laboratory ever to study our life-giving star, taking images of the Sun from closer than any spacecraft before and being the first to look at its polar regions.

In February 2025, Solar Orbiter officially began the 'high latitude' part of its journey around the Sun by tilting its orbit to an angle of 17° with respect to the Sun's equator. In contrast, the planets and all other Sun-observing spacecraft orbit in the ecliptic plane, tilted at most 7° from the solar equator.

The only exception to this is the ESA/NASA Ulysses mission (1990-2009), which flew over the Sun's poles but did not carry any imaging instruments. Solar Orbiter's observations will complement Ulysses' by observing the poles for the first time with telescopes, in addition to a full suite of in-situ sensors, while flying much closer to the Sun. Additionally, Solar Orbiter will monitor changes at the poles throughout the solar cycle.

Solar Orbiter will continue to orbit around the Sun at this tilt angle until 24 December 2026, when its next flight past Venus will tilt its orbit to 24°. From 10 June 2029, the spacecraft will orbit the Sun at an angle of 33°. (Overview of Solar Orbiter's journey around the Sun.)

Solar Orbiter is a space mission of international collaboration between ESA and NASA, operated by ESA. Solar Orbiter's Polarimetric and Helioseismic Imager (PHI) instrument is led by the Max Planck Institute for Solar System Research (MPS), Germany. The Extreme Ultraviolet Imager (EUI) instrument is led by the Royal Observatory of Belgium (ROB). The Spectral Imaging of the Coronal Environment (SPICE) instrument is a European-led facility instrument, led by the Institut d'Astrophysique Spatiale (IAS) in Paris, France.

Materialsprovided byEuropean Space Agency.Note: Content may be edited for style and length.

Only 13 % know: The one-minute self-exam that could save young men’s lives

A recent survey commissioned by The Ohio State University Comprehensive Cancer Center — Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC — James) focused on Americans' perceptions of testicular cancer. The results suggest more can be done to educate the public about the disease, which affects nearly 10,000 adults in the United States each year according to the American Cancer Society.

The OSUCCC — James survey found that only 13% of U.S. adults — just over 1 in 10 — correctly identified testicular cancer as most commonly affecting men under 40. This is significant, as the disease is most prevalent among men between the ages of 20 and 40.

Additionally, two-thirds (65%) of respondents believe an evaluation should be part of an annual exam after age 40. However, cancer experts note that self-exams are most relevant between the ages of 20 and 40.

"In my experience, a lot of men are surprised that testicular cancer is most common among young men," said Shawn Dason, MD, urologic oncologist at the OSUCCC — James. "It's something you're just not expecting in your twenties or thirties. A lot of young men's focus might be on developing their career, their day-to-day life. That's a very different track of mind than perhaps your health."

Survey results In the survey of 1,008 respondents aged 18 and older, 6 in 10 (63%) correctly identified that testicular cancer is often curable if caught early, and just over half (54%) correctly said that monthly self-checks should be conducted.

"We are really fortunate in testicular cancer that the vast majority of patients are diagnosed at an early stage," said Dason, also an associate clinical professor of urology at Ohio State College of Medicine. "That means the vast majority of patients are actually diagnosed before the cancer has had an opportunity to spread to other parts of the body."

Younger Americans, age 18-29, and adults, age 30-49, were more likely than their older counterparts to say that testicular cancer affects fertility (68% and 61%, respectively). However, younger adults were also more likely than all other age groups to incorrectly agree with the statement that testicular cancer symptoms are always painful (18%).

"Testicular cancer does not typically come with painful symptoms," said Dason. "That's why routine self-exams are so important to detect any lumps or changes to the testicle. If you feel something out of the ordinary, like a lump or bump, or if the testicle changes in size, call your doctor."

This survey was conducted by SSRS on its Opinion Panel Omnibus platform. The SSRS Opinion Panel Omnibus is a national, twice-per-month, probability-based survey. Data collection was conducted from May 2 — May 5, 2025, among a sample of 1,008 respondents. The survey was conducted via web (n=978) and telephone (n=30) and administered in English. The margin of error for total respondents is +/-3.6 percentage points at the 95% confidence level. All SSRS Opinion Panel Omnibus data are weighted to represent the target population of U.S. adults ages 18 or older.

To learn more about cancer treatment and clinical trials at the OSUCCC — James, visitcancer.osu.eduor call 1-800-293-5066.

Materialsprovided byOhio State University Wexner Medical Center.Note: Content may be edited for style and length.

600-million-year-old body blueprint found in sea anemones

A new study from the University of Vienna reveals that sea anemones use a molecular mechanism known from bilaterian animals to form their back-to-belly body axis. This mechanism ("BMP shuttling") enables cells to organize themselves during development by interpreting signaling gradients. The findings, published inScience Advances, suggest that this system evolved much earlier than previously assumed and was already present in the common ancestor of cnidarians and bilaterians.

Most animals exhibit bilateral symmetry — a body plan with a head and tail, a back and belly, and left and right sides. This body organization characterizes the vast group known as Bilateria, which includes animals as diverse as vertebrates, insects, molluscs and worms. In contrast, cnidarians, such as jellyfish and sea anemones, are traditionally described as radially symmetric, and indeed jellyfish are. However, the situation is different is the sea anemones: despite superficial radiality, they are bilaterally symmetric – first at the level of gene expression in the embryo and later also anatomically as adults. This raises a fundamental evolutionary question: did bilateral symmetry arise in the common ancestor of Bilateria and Cnidaria, or did it evolve independently in multiple animal lineages? Researchers at the University of Vienna have addressed this question by investigating whether a key developmental mechanism called BMP shuttling is already present in cnidarians.

In bilaterian animals, the back-to-belly axis is patterned by a signaling system involving Bone Morphogenetic Proteins (BMPs) and their inhibitor Chordin. BMPs act as molecular messengers, telling embryonic cells where they are and what kind of tissue they should become. In bilaterian embryos, Chordin binds BMPs and blocks their activity in a process called "local Inhibition." At the same time, in some but not all bilaterian embryonic models, Chordin can also transport bound BMPs to other regions in the embryo, where they are released again – a mechanism known as "BMP shuttling." Animals as evolutionary distant as sea urchins, flies and frogs use BMP shuttling, however, until now it was unclear whether they all evolved shuttling independently or inherited it from their last common ancestor some 600 million years ago. Both, local inhibition and BMP shuttling, create a gradient of BMP activity across the embryo. Cells in the early embryo detect this gradient and adopt different fates depending on BMP levels. For example, in vertebrates, the central nervous system forms where BMP signaling is lowest, kidneys will develop at intermediate BMP signaling levels, and the skin of the belly will form in the area of maximum BMP signaling. This way, the body's layout from back to belly is established. To find out whether BMP shuttling by Chordin represents an ancestral mechanism for patterning the back to belly axis, the researchers had to look at bilaterally symmetric animals outside Bilateria – the sea anemones.

To test whether sea anemones use Chordin as a local inhibitor or as a shuttle, the researchers first blocked Chordin production in the embryos of the model sea anemoneNematostella vectensis. InNematostella, unlike in Bilateria, BMP signaling requires the presence of Chordin, so, without Chordin, BMP signaling ceased and the formation of the second body axis failed. Chordin was then reintroduced into a small part of the embryo to see if it could restore axis formation. BMP signaling resumed — but it was unclear whether this was because Chordin simply blocked BMPs locally, allowing a gradient to form from existing BMP sources, or because it actively transported BMPs to distant parts of the embryo, shaping the gradient more directly. To answer this, two versions of Chordin were tested — one membrane-bound and immobile, the other diffusible. If Chordin acted as a local inhibitor, both, the immobile and the diffusible Chordin would restore BMP signaling on the side of the embryo opposite to the Chordin producing cells. However, only diffusible Chordin can act as a BMP shuttle. The results were clear: Only the diffusible form was able to restore BMP signaling at a distance from its source, demonstrating that Chordin acts as a BMP shuttle in sea anemones — just as it does in flies and frogs.

A shared strategy across over 600 million years of evolution?

The presence of BMP shuttling in both cnidarians and bilaterians suggests that this molecular mechanism predates their evolutionary divergence some 600-700 million years ago. "Not all Bilateria use Chordin-mediated BMP shuttling, for example, frogs do, but fish don't, however, shuttling seems to pop up over and over again in very distantly related animals making it a good candidate for an ancestral patterning mechanism. The fact that not only bilaterians but also sea anemones use shuttling to shape their body axes, tells us that this mechanism is incredibly ancient," says David Mörsdorf, first author of the study and postdoctoral researcher at the Department of Neurosciences and Developmental Biology at the University of Vienna. "It opens up exciting possibilities for rethinking how body plans evolved in early animals."

Grigory Genikhovich, senior author and group leader at the same department, adds: "We might never be able to exclude the possibility that bilaterians and bilaterally symmetric cnidarians evolved their bilateral body plans independently. However, if the last common ancestor of Cnidaria and Bilateria was a bilaterally symmetric animal, chances are that it used Chordin to shuttle BMPs to make its back-to-belly axis. Our new study showed that."

The study was supported by the Austrian Science Fund (FWF), grants P32705 and M3291.

Materialsprovided byUniversity of Vienna.Note: Content may be edited for style and length.

The invisible killer: PM 1 pollution uncovered across America

Air pollution causes health problems and is attributable to some 50,000 annual deaths in the United States, but not all air pollutants pack the same punch.

Scientists have tracked the scope of "PM 2.5" pollution over decades. PM 2.5 is a size of "particulate matter" that is less than 2.5 microns in diameter. But less information was available about its even tinier cousin, described as "submicron" or "PM 1" particulate matter, which is less than 1 micron in diameter. Why does that matter? Because the "little guys" might be the source of worse health effects.

With a study now published inThe Lancet Planetary Health, researchers at Washington University in St. Louis have quantified the amount of PM 1 over the United States from the past 25 years.

"This measurement serves as a starting point to understand which pollutants regulators could target to make the most effective health impact," said Randall Martin, the Raymond R. Tucker Distinguished Professor of energy, environmental and chemical engineering in the McKelvey School of Engineering. "This effort builds upon WashU's strengths in satellite remote sensing and modeling atmospheric aerosols that were leveraged in this study," he added.

Chi Li, research assistant professor in Martin's atmospheric composition analysis group, is the first author of the work. Li said these estimates will enable further investigation into both the health and environmental effects of submicron particles.

Li said the very small particles quantified in this study generally come from direct air emissions, such as the black carbon particles released by diesel engines or the smoke from wildfires. Sometimes PM 1 can also form through secondary processes when sulfur dioxide or nitrogen oxides are spit out through fuel combustion and burning coal.

It makes intuitive sense that smaller particles of air pollution could do more damage to the human body because they are able to slip past the body's innate defenses. These submicron particles are at least 6 times smaller than blood cells.

Air particles are not always one single thing, but mixtures of other materials stacked together.

The larger sizes of particles are critically more dominated by components that are not easily modifiable like mineral dust, noted Li.

The researchers were able to calculate their submicron estimates based on the known ratios of what makes up PM 2.5 particles, which include seven main components such as sulfate, nitrate and mineral dust.

"Putting the seven species together, we can calculate the total PM 1 concentration over the country," Li said.

This research sets the stage for further analysis of where, how and why certain types of particles congregate, and how they can affect the environment and human body.

"When EPA first promulgated a fine PM air quality standard in 1997, there was considerable discussion about regulating PM 1 or PM2.5," said Jay Turner, the James McKelvey Professor of Engineering Education and co-author on the study. "For numerous reasons, including but not limited to the lack of health impacts studies for PM 1 compared to studies for PM 2.5, the latter was chosen. This study provides a comprehensive, nationwide dataset to examine PM1 impacts on health."

A next step will involve working with epidemiologists to assess the association of PM 1 with health outcomes.

The new dataset revealed another notable fact: pollution regulation does help. Across the contiguous U.S., average PM 1 levels in the air people breathe dropped sharply from 1998 to 2022, thanks to decades of environmental regulations like the Clean Air Act. However, this progress has slowed since 2010, mainly because of rising wildfire activity. Future pollution controls will need to address emerging, non-fossil fuel sources, study authors said.

Other countries like China have a head start tracking nationwide PM 1, but now the U.S. can quickly catch up.

"This dataset offers unprecedented information for the United States about an important pollutant for which few other measurements exist," Martin said.

Funding from National Institute of Environmental Health Sciences, National Institutes of Health.

Materialsprovided byWashington University in St. Louis. Original written by Leah Shaffer.Note: Content may be edited for style and length.

Tiny orange beads found by Apollo astronauts reveal moon’s explosive past

The Apollo astronauts didn't know what they'd find when they explored the surface of the moon, but they certainly didn't expect to see drifts of tiny, bright orange glass beads glistening among the otherwise monochrome piles of rocks and dust.

The beads, each less than 1 mm across, formed some 3.3 to 3.6 billion years ago during volcanic eruptions on the surface of the then-young satellite. "They're some of the most amazing extraterrestrial samples we have," said Ryan Ogliore, an associate professor of physics in Arts & Sciences at Washington University in St. Louis, home to a large repository of lunar samples that were returned to Earth. "The beads are tiny, pristine capsules of the lunar interior."

Using a variety of microscopic analysis techniques not available when the Apollo astronauts first returned samples from the moon, Ogliore and a team of researchers have been able to take a close look at the microscopic mineral deposits on the outside of lunar beads. The unprecedented view of the ancient lunar artifacts was published inIcarus. The investigation was led by Thomas Williams, Stephen Parman and Alberto Saal from Brown University.

The study relied, in part, on the NanoSIMS 50, an instrument at WashU that uses a high-energy ion beam to break apart small samples of material for analysis. WashU researchers have used the device for decades to study interplanetary dust particles, presolar grains in meteorites, and other small bits of debris from our solar system.

The study combined a variety of techniques — atom probe tomography, scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy — at other institutions to get a closer look at the surface of the beads. "We've had these samples for 50 years, but we now have the technology to fully understand them," Ogliore said. "Many of these instruments would have been unimaginable when the beads were first collected."

As Ogliore explained, each glass bead tells its own story of the moon's past. The beads — some shiny orange, some glossy black — formed when lunar volcanoes shot material from the interior to the surface, where each drop of lava solidified instantly in the cold vacuum that surrounds the moon. "The very existence of these beads tells us the moon had explosive eruptions, something like the fire fountains you can see in Hawaii today," he said. Because of their origins, the beads have a color, shape and chemical composition unlike anything found on Earth.

Tiny minerals on the surface of the beads could react with oxygen and other components of Earth's atmosphere. To avoid this possibility, the researchers extracted beads from deep within samples and kept them protected from air exposure through every step of the analysis. "Even with the advanced techniques we used, these were very difficult measurements to make," Ogliore said.

The minerals (including zinc sulfides) and isotopic composition of the bead surfaces serve as probes into the different pressure, temperature and chemical environment of lunar eruptions 3.5 billion years ago. Analyses of orange and black lunar beads have shown that the style of volcanic eruptions changed over time. "It's like reading the journal of an ancient lunar volcanologist," Ogliore said.

Materialsprovided byWashington University in St. Louis.Note: Content may be edited for style and length.

Cluck once, and the river shakes: Inside the Amazon’s giant snake saga

What inspired you to become a researcher?

As a child, I was fascinated by reports and documentaries about field research and often wondered what it took to be there and what kind of knowledge was being produced. Later, as an ecologist, I felt the need for approaches that better connected scientific research with real-world contexts. I became especially interested in perspectives that viewed humans not as separate from nature, but as part of ecological systems. This led me to explore integrative methods that incorporate local and traditional knowledge, aiming to make research more relevant and accessible to the communities involved.

Can you tell us about the research you're currently working on?

My research focuses on ethnobiology, an interdisciplinary field intersecting ecology, conservation, and traditional knowledge. We investigate not only the biodiversity of an area but also the relationship local communities have with surrounding species, providing a better understanding of local dynamics and areas needing special attention for conservation. After all, no one knows a place better than those who have lived there for generations. This deep familiarity allows for early detection of changes or environmental shifts. Additionally, developing a collaborative project with residents generates greater engagement, as they recognize themselves as active contributors; and collective participation is essential for effective conservation.

Could you tell us about one of the legends surrounding anacondas?

One of the greatest myths is about the Great Snake — a huge snake that is said to inhabit the Amazon River and sleep beneath the town. According to the dwellers, the Great Snake is an anaconda that has grown too large; its movements can shake the river's waters, and its eyes look like fire in the darkness of night. People say anacondas can grow so big that they can swallow large animals — including humans or cattle — without difficulty.

What could be the reasons why the traditional role of anacondas as a spiritual and mythological entity has changed? Do you think the fact that fewer anacondas have been seen in recent years contributes to their diminished importance as an mythological entity?

Not exactly. I believe the two are related, but not in a direct way. The mythology still exists, but among Aritapera dwellers, there's a more practical, everyday concern — mainly the fear of losing their chickens. As a result, anacondas have come to be seen as stealthy thieves. These traits are mostly associated with smaller individuals (up to around 2-2.5 meters), while the larger ones — which may still carry the symbolic weight of the 'Great Snake' — tend to retreat to more sheltered areas; because of the presence of houses, motorized boats, and general noise, they are now seen much less frequently.

Can you share some of the quotes you've collected in interviews that show the attitude of community members towards anacondas? How do chickens come into play?

When talking about anacondas, one thing always comes up: chickens. "Chicken is her [the anaconda's] favorite dish. If one clucks, she comes," said one dweller. This kind of remark helps explain why the conflict is often framed in economic terms. During the interviews and conversations with local dwellers, many emphasized the financial impact of losing their animals: "The biggest loss is that they keep taking chicks and chickens…" or "You raise the chicken — you can't just let it be eaten for free, right?"

For them, it's a loss of investment, especially since corn, which is used as chicken feed, is expensive. As one person put it: "We spend time feeding and raising the birds, and then the snake comes and takes them." One dweller shared that, in an attempt to prevent another loss, he killed the anaconda and removed the last chicken it had swallowed from its belly — "it was still fresh," he said — and used it for his meal, cooking the chicken for lunch so it wouldn't go to waste.

Some interviewees reported that they had to rebuild their chicken coops and pigsties because too many anacondas were getting in. Participants would point out where the anaconda had entered and explained that they came in through gaps or cracks but couldn't get out afterwards because they 'tufavam' — a local term referring to the snake's body swelling after ingesting prey.

We saw chicken coops made with mesh, with nylon, some that worked and some that didn't. Guided by the locals' insights, we concluded that the best solution to compensate for the gaps between the wooden slats is to line the coop with a fine nylon mesh (to block smaller animals), and on the outside, a layer of wire mesh, which protects the inner mesh and prevents the entry of larger animals.

Are there any common misconceptions about this area of research? How would you address them?

Yes, very much. Although ethnobiology is an old science, it's still underexplored and often misunderstood. In some fields, there are ongoing debates about the robustness and scientific validity of the field and related areas. This is largely because the findings don't always rely only on hard statistical data.

However, like any other scientific field, it follows standardized methodologies, and no result is accepted without proper grounding. What happens is that ethnobiology leans more toward the human sciences, placing human beings and traditional knowledge as key variables within its framework.

To address these misconceptions, I believe it's important to emphasize that ethnobiology produces solid and relevant knowledge — especially in the context of conservation and sustainable development. It offers insights that purely biological approaches might overlook and helps build bridges between science and society.

What are some of the areas of research you'd like to see tackled in the years ahead?

I'd like to see more conservation projects that include local communities as active participants rather than as passive observers. Incorporating their voices, perspectives, and needs not only makes initiatives more effective, but also more just. There is also great potential in recognizing and valuing traditional knowledge. Beyond its cultural significance, certain practices — such as the use of natural compounds — could become practical assets for other vulnerable regions. Once properly documented and understood, many of these approaches offer adaptable forms of environmental management and could help inform broader conservation strategies elsewhere.

How has open science benefited the reach and impact of your research?

Open science is crucial for making research more accessible. By eliminating access barriers, it facilitates a broader exchange of knowledge — important especially for interdisciplinary research like mine which draws on multiple knowledge systems and gains value when shared widely. For scientific work, it ensures that knowledge reaches a wider audience, including practitioners and policymakers. This openness fosters dialogue across different sectors, making research more inclusive and encouraging greater collaboration among diverse groups.

Materialsprovided byFrontiers.Note: Content may be edited for style and length.

Tidak Ada Lagi Postingan yang Tersedia.

Tidak ada lagi halaman untuk dimuat.