A cost-effective all-in-one halide material for all-solid-state batteries

feeds10 Dilihat

All-solid-state batteries require advanced cathode designs to realize their potential for high energy density and economic viability1,2,3. Integrated all-in-one cathodes, which eliminate inactive conductive additives and heterogeneous interfaces, hold promise for substantial energy and stability gains but are hindered by materials lacking sufficient Li+/e−conductivity, mechanical robustness and structural stability4,5,6,7,8,9,10,11,12,13,14. Here we present Li1.3Fe1.2Cl4, a cost-effective halide material that overcomes these challenges. Leveraging reversible Fe2+/Fe3+redox and rapid Li+/e−transport within its framework, Li1.3Fe1.2Cl4achieves an electrode energy density of 529.3 Wh kg−1versus Li+/Li. Critically, Li1.3Fe1.2Cl4shows unique dynamic properties during cycling, including reversible local Fe migration and a brittle-to-ductile transition that confers self-healing behaviour. This enables exceptional cycling stability, maintaining 90% capacity retention for 3,000 cycles at a rate of 5 C. Integration of Li1.3Fe1.2Cl4with a nickel-rich layered oxide further increases the energy density to 725.6 Wh kg−1. By harnessing the advantageous dynamic mechanical and diffusion properties of all-in-one halides, this work establishes all-in-one halides as an avenue for energy-dense, durable cathodes in next-generation all-solid-state batteries.

This is a preview of subscription content,access via your institution

Access Nature and 54 other Nature Portfolio journals

Get Nature+, our best-value online-access subscription

Receive 51 print issues and online access

Prices may be subject to local taxes which are calculated during checkout

All data generated or analysed during this study are provided in this paper (and its supplementary files).Source dataare provided with this paper.

Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries.Nat. Energy6, 227–239 (2021).

Janek, J. & Zeier, W. G. Challenges in speeding up solid-state battery development.Nat. Energy8, 230–240 (2023).

Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries.Nat. Energy3, 267–278 (2018).

Inoishi, A., Nishio, A., Yoshioka, Y., Kitajou, A. & Okada, S. A single-phase all-solid-state lithium battery based on Li1.5Cr0.5Ti1.5(PO4)3for high rate capability and low temperature operation.Chem. Commun.54, 3178–3181 (2018).

Tan, D. H. S. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes.Science373, 1494–1499 (2021).

ArticleADSCASPubMedGoogle Scholar

Li, M. et al. Dense all-electrochem-active electrodes for all-solid-state lithium batteries.Adv. Mater.33, 2008723 (2021).

Han, F., Gao, T., Zhu, Y., Gaskell, K. J. & Wang, C. A battery made from a single material.Adv. Mater.27, 3473–3483 (2015).

Wang, K., Gu, Z., Xi, Z., Hu, L. & Ma, C. Li3TiCl6as ionic conductive and compressible positive electrode active material for all-solid-state lithium-based batteries.Nat. Commun.14, 1396 (2023).

ArticleADSPubMedPubMed CentralGoogle Scholar

Inoishi, A., Omuta, T., Kobayashi, E., Kitajou, A. & Okada, S. A single-phase, all-solid-state sodium battery using Na3−xV2−xZrx(PO4)3as the cathode, anode, and electrolyte.Adv. Mater. Interfaces4, 1600942 (2017).

Inoishi, A. et al. Single-phase all-solid-state lithium-ion battery using Li3V2(PO4)3as the cathode, anode, and electrolyte.ChemistrySelect2, 7925–7929 (2017).

Tan, D. H. S. et al. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte.ACS Energy Lett.4, 2418–2427 (2019).

Ohno, S., Rosenbach, C., Dewald, G. F., Janek, J. & Zeier, W. G. Linking solid electrolyte degradation to charge carrier transport in the thiophosphate‐based composite cathode toward solid‐state lithium-sulfur batteries.Adv. Funct. Mater.31, 2010620 (2021).

Schwietert, T. K. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes.Nat. Mater.19, 428–435 (2020).

ArticleADSCASPubMedGoogle Scholar

Cui, L. et al. A cathode homogenization strategy for enabling long-cycle-life all-solid-state lithium batteries.Nat. Energy9, 1084–1094 (2024).

Minnmann, P., Quillmann, L., Burkhardt, S., Richter, F. H. & Janek, J. Quantifying the impact of charge transport bottlenecks in composite cathodes of all-solid-state batteries.J. Electrochem. Soc.168, 040537 (2021).

Bielefeld, A., Weber, D. A. & Janek, J. Microstructural modeling of composite cathodes for all-solid-state batteries.J. Phys. Chem. C123, 1626–1634 (2019).

Strauss, F. et al. Impact of cathode material particle size on the capacity of bulk-type all-solid-state batteries.ACS Energy Lett.3, 992–996 (2018).

Minnmann, P. et al. Designing cathodes and cathode active materials for solid‐state batteries.Adv. Energy Mater.12, 2201425 (2022).

Cao, D. et al. Processing strategies to improve cell-level energy density of metal sulfide electrolyte-based all-solid-state Li metal batteries and beyond.ACS Energy Lett.5, 3468–3489 (2020).

Wang, C. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries.Nano Energy76, 105015 (2020).

Zahnow, J. et al. Impedance analysis of NCM cathode materials: electronic and ionic partial conductivities and the influence of microstructure.ACS Appl. Energy Mater.4, 1335–1345 (2021).

Tian, Y. et al. Compatibility issues between electrodes and electrolytes in solid-state batteries.Energy Environ. Sci.10, 1150–1166 (2017).

Zhang, J. et al. Challenges and strategies of low-pressure all-solid-state batteries.Adv. Mater.37, 2413499 (2025).

Hu, X. et al. External-pressure–electrochemistry coupling in solid-state lithium metal batteries.Nat. Rev. Mater.9, 305–320 (2024).

Zhou, J. et al. Healable and conductive sulfur iodide for solid-state Li–S batteries.Nature627, 301–305 (2024).

ArticleADSCASPubMedGoogle Scholar

Swamy, T., Chen, X. & Chiang, Y.-M. Electrochemical redox behavior of Li ion conducting sulfide solid electrolytes.Chem. Mater.31, 707–713 (2019).

Shao, B. et al. Enabling conversion‐type iron fluoride cathode by halide‐based solid electrolyte.Adv. Funct. Mater.32, 2206845 (2022).

Liang, J. et al. Halide layer cathodes for compatible and fast-charged halides-based all-solid-state Li metal batteries.Angew. Chem. Int. Ed.62, e202217081 (2023).

Liu, Z. et al. Low-cost iron trichloride cathode for all-solid-state lithium-ion batteries.Nat. Sustain.7, 1492–1500 (2024).

Liu, Z., Zhang, G., Pepas, J., Ma, Y. & Chen, H. Li2FeCl4as a cost-effective and durable cathode for solid-state Li-ion batteries.ACS Energy Lett.9, 5464–5470 (2024).

ArticleCASPubMedPubMed CentralGoogle Scholar

Fu, J. et al. Superionic conducting halide frameworks enabled by interface-bonded halides.J. Am. Chem. Soc.145, 2183–2194 (2023).

Li, X. et al. Structural regulation of halide superionic conductors for all-solid-state lithium batteries.Nat. Commun.15, 53 (2024).

ArticleADSCASPubMedPubMed CentralGoogle Scholar

Wang, Q. et al. Designing lithium halide solid electrolytes.Nat. Commun.15, 1050 (2024).

ArticleADSCASPubMedPubMed CentralGoogle Scholar

Jun, K., Chen, Y., Wei, G., Yang, X. & Ceder, G. Diffusion mechanisms of fast lithium-ion conductors.Nat. Rev. Mater.9, 887–905 (2024).

Kanno, R. et al. Structure, ionic conductivity, and phase transformation in new polymorphs of the double chloride spinel, Li2FeCl4.J. Solid State Chem.72, 363–375 (1988).

Tanibata, N. et al. High formability and fast lithium diffusivity in metastable spinel chloride for rechargeable all-solid-state lithium-ion batteries.Adv. Energy Sustain. Res.1, 2000025 (2020).

Hebb, M. H. Electrical conductivity of silver sulfide.J. Chem. Phys.20, 185–190 (1952).

Stallard, J. C. et al. Mechanical properties of cathode materials for lithium-ion batteries.Joule6, 984–1007 (2022).

Qu, M. et al. Nanomechanical quantification of elastic, plastic, and fracture properties of LiCoO2.Adv. Energy Mater.2, 940–944 (2012).

Xu, R., Sun, H., de Vasconcelos, L. S. & Zhao, K. Mechanical and structural degradation of LiNixMnyCozO2cathode in Li-ion batteries: an experimental study.J. Electrochem. Soc.164, A3333–A3341 (2017).

Liu, H. et al. Capturing metastable structures during high-rate cycling of LiFePO4nanoparticle electrodes.Science344, 1252817 (2014).

Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.Phys. Rev. B54, 11169 (1996).

Blöchl, P. E. Projector augmented-wave method.Phys. Rev. B50, 17953 (1994).

Perdew, J. P., Ernzerhof, M. & Burke, K. Rationale for mixing exact exchange with density functional approximations.J. Chem. Phys.105, 9982–9985 (1996).

Jain, A. et al. The Materials Project: a materials genome approach to accelerating materials innovation.APL Mater.1, 011002 (2013).

Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data.J. Appl. Crystallogr.44, 1272–1276 (2011).

Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability.Angew. Chem. Int. Ed.58, 8039–8043 (2019).

Wang, S., Liu, Y. & Mo, Y. Frustration in super‐ionic conductors unraveled by the density of atomistic states.Angew. Chem.62, e202215544 (2023).

Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package.J. Appl. Crystallogr.46, 544–549 (2013).

Farrow, C. et al. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals.J. Phys. Condens. Matter19, 335219 (2007).

Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT.J. Synchrotron Radiat.12, 537–541 (2005).

Munoz, M., Argoul, P. & Farges, F. Continuous Cauchy wavelet transform analyses of EXAFS spectra: a qualitative approach.Am. Mineral.88, 694–700 (2003).

Lee, Y.-G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes.Nat. Energy5, 299–308 (2020).

These authors contributed equally: Jiamin Fu, Changhong Wang, Shuo Wang

Department of Mechanical and Materials Engineering, University of Western Ontario, London, Ontario, Canada

Jiamin Fu, Changhong Wang, Jing Luo, Jung Tae Kim, Yang Zhao, Feipeng Zhao, Weihan Li, Bolin Fu, Xiaoting Lin, Yang Hu, Han Su, Xiaoge Hao, Yingjie Gao, Hamid Abdolvand & Xueliang Sun

Department of Chemistry, University of Western Ontario, London, Ontario, Canada

Eastern Institute for Advanced Study, Ningbo Institute of Digital Twin, Eastern Institute of Technology, Ningbo, Zhejiang, People’s Republic of China

Changhong Wang, Shutao Zhang, Ziqing Wang & Xueliang Sun

Zhejiang Key Laboratory of All-Solid-State Battery, Ningbo Key Laboratory of All-Solid-State Battery, Ningbo, Zhejiang, People’s Republic of China

Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA

Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Solid State Batteries Research Center, GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan Key Laboratory of Advanced Electrochemical Functional Materials and Technology, Foshan, People’s Republic of China

Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China

Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

Search author on:PubMedGoogle Scholar

J.F. designed the experiments and carried out the sample synthesis and most of the characterizations. S.W. performed the computational simulations (under the supervision of Y.M.). C.W. guided the writing of the paper, the fabrication of pouch cells and the design of schematic figures. J.W.R. helped with all structural analyses of diffraction experiments. Y.Z. and X.L. helped with electron microscope-related experiments. W.L., J.T.K., Y.H., X.H. and Y.G. carried out the synchrotron-related measurements. J. Liu performed neutron data collection and analyses. B.F. and H.A. helped with nanoindentation tests. H.S., J. Liang, X.Y. and F.Z. helped with interpreting and organizing the data. Z.W. and S.Z. helped with the battery and DMA testing. J.F. and J. Luo discussed and wrote the paper. T.-K.S., Y.M. and X.S. supervised the project. All the authors helped to revise the final paper.

Correspondence toTsun-Kong Sham,Yifei MoorXueliang Sun.

The authors declare no competing interests.

Naturethanks Laidong Zhou and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s noteSpringer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This file contains Supplementary Figs. 1–44, Tables 1–12 and References.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Fu, J., Wang, C., Wang, S.et al.A cost-effective all-in-one halide material for all-solid-state batteries.Nature(2025). https://doi.org/10.1038/s41586-025-09153-1

DOI:https://doi.org/10.1038/s41586-025-09153-1

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Tinggalkan Balasan

Alamat email Anda tidak akan dipublikasikan. Ruas yang wajib ditandai *